Deep Learning for Data Science
DS 542

Lecture 11
Residual Networks

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.



https://udlbook.com

=== Foundational Concepts ===

02 -- Supervised learning refresher

Where we are

03 -- Shallow networks and their representation capacity

04 -- Deep networks and depth efficiency

05 -- Loss function in terms of maximizing likelihoods

06 — Fitting models with different optimizers

07a — Gradients on deep models and backpropagation

07b — Initialization to avoid vanishing and exploding weights & gradients

08 — Measuring performance, test sets, overfitting and double descent
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09 — Regularization to improve fitting on test sets and unseen data
=== Network Architectures and Applications ===
v/ 10 — Convolutional Networks

® 11 — Residual Networks and Recurrent Neural Networks

® 12 — Transformers
® Large Language and other Foundational Models
® Generative Models

® Graph Neural Networks



Topics

® Residual connections and residual blocks
® Exploding gradients in residual networks
® Batch normalization

® Common residual architectures
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Previously we saw a sequential network:

hl — fl :X7¢1] h h h
hy = fo[hy, ¢, x—{ i ——{ o —{ 6 ——{f —
h3 — f3 :h27 ¢3}

y = f4lhs, ¢,

Fully connected Convolutional network (e.g. 1 channel [1 1
channel):

network: - hi = a [5 + Wi1Ti—1 + Wok; + W3Ti41
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Previously we saw a sequential network:

hy = fi[x, ¢,] b b b

hy = f£[hy, ¢, x—{ fi = f = i ——{ f |—>
hz = f3[ha, ¢

y = filhs, @]

Can think of as a sequence of nested
functions:

y=1%4 [f3 [f2 [fl [Xa ¢1]7 ¢2] ) ¢3:| ’ ¢4]



More layers are better...
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More layers are better... up to a point

t
tra;,.. Sve
ing; " ergy
: n

QD
~—
NS
o

o

—

N

o

% Test error
% Training error

0 | ‘Traininvg, step i | 60000 0 E l Trainir;g step ' 6000C

Convolutional Network on CIFAR10



What's going on?

Not completely understood, but...

Gradients of deeper

Take a look at dy/dx for shallow and deep networks.
networks are much less
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A small step in gradient descent may jump to wildly
different valued gradient!



What's going on?
Not completely understood, but...

Take a look at dy/dx for shallow and deep networks.
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The Shattered Gradient Phenomenon

Gradients of deeper
networks are much less
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A small step in gradient descent may jump to wildly
different valued gradient!

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.



What's going on?  The Shattered Gradient Phenomenon

y =14 [f:s {fz [fl (%, 4], Cbz] 5 Cb:a} ’ ¢4]

The derivative of the output y w.r.t. the first layer f; is, by the
chain rule:

8}7 B 8f4 afg 8f2
of,  Of; 0f, Of;

f, impacts f, impacts f,, etc...

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.



Solution: Residual connections

Regular sequential network:

e ——

hy =1
h, =1,
hs — £,

:Xv ¢1]
:hla ¢2}

:h27 ¢3}

y = f4lhs, ¢,

Residual network:
hl =X+ fl [X7 ¢1]
hy = hy + f5/hy, ¢,
hs = hy + f5|hs, ¢4
y = hs + f4|hs, ¢,

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, http://arxiv.org/abs/1512.03385

Residual connections
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http://arxiv.org/abs/1512.03385

Residual Network

Residual connections

h; = x + f1[x, @] /
hs = hy + f5[hy, ¢,
)

hs = hy + f3[hs, ¢ ° :

X coreeeneee >‘ fy }: » f5 l[¢ > f3 L‘|—7C‘ - £y }"E
y = hs + f4|hs, ¢, h, h s

Substituting in:
y =x + fi[x]
+ fox + fi[x]]

+ f5 :x + f; [X] + f5 [X g2 il [X]”

+ £ —x+f1[x] + 5 [x + f1[x]] + f3 [X+f1[X] +f‘2[x+f1[XHH



Residual Network

We can unravel all the possible paths

The output is the sum of the input plus 4
partial networks.

y=x + fi[x]
+ f)[X-Fle}

;{x+flx ]+ f2[x + fi[x H}

+ fl{x+ﬁ x| + £ [x + i [x]] +f;;{x+f.fx1+qux+f1[x]]H

” f3 [X+f1[x] +6[x+ fl[x]]] Yy
T> 4; fs \) >y
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7 =

f4{x+f1[ }+f2[x+f1[ 1 +f3[x+f1[x]+f2[x+f1[x]}H



Residual Network as Ensemble of Networks

X

f1[x]

£ [x + f1[x]]

1\

| Ensemble of four networks

B[+ 1] + B[+ fi[x]] |y

-
NV

Another ensemble of four

S f D~ B
S
------ o £ |
() ”
f, fs

/ networks

D@

f, [x+f1[x] +h[x+ fi[x]] + £ [erfl[X} +f2[x+f1[xHH



Residual Network as Ensemble of Networks
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f, [x+f1[x] +h[x+ fi[x]] + £ [erfl[X} +f2[x+f1[xHH

16 possible paths through the
network!

8 paths include f,

The influence of f, on dy/0df; takes
8 different forms

Gradients on shorter paths
generally better behaved.
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Residual Network as Ensemble of Networks

fl f1[x]
fy [x + £ [x”

S

l\ f3 [X-i—fl[x] + f5 [X+f1[XH] A

During training, the model can amplify
or attenuate the different paths to
achieve the best results
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Order of operations is important

a)

Can only add to the residual
X because of the RelLU
b) More flexible approach to end
with linear block.

X% _} D Starting with linear block gives us

some flexibility on spatial
C) resolution.

_ —>[ReLUHLin = rHReLUHLinear} % Note: if we start with a RelU,

then will clamp negative values
and so do nothing




This helps increase depth
up to a point...



Topics

® Residual connections and residual blocks
® Exploding gradients in residual networks
® Batch normalization

® Common residual architectures



Exploding Gradients in Residual Networks

1 2 4
LY 2 > | 12 Y 4 4 4 X 8
X ;;» fq f D > 9 D > f3 D A >

With He initialization we can
control the variance inside

the block
€ bloc But variance doubles when

we add the residual back in.

And then grows exponentially.



Exploding Gradients in Residual Networks

P /!
Could stabilize by renormalizing after adding
each residual.

More common to apply batch normalization.
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Batch Normalization

We already talked about batch
normalization in the context of
regularization...

e Layer normalization is generally
considered better now, but it
wasn’t invented yet when the
following work was done.




Batch Normalization (a.k.a. BatchNorm)

P

\ Y Y

® Shifts and rescales each activation so that its mean and variance across
the batch become values that are learned during training

S. loffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Mar. 2015,
http://arxiv.org/abs/1502.03167


http://arxiv.org/abs/1502.03167

Batch Normalization (a.k.a. BatchNorm)

L@ L)

® Shifts and rescales each activation so that its mean and variance across
the batch become values that are learned during training

Y
M
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M
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Calculate the sample mean and
standard deviation for each hidden unit
across samples of the batch.

1
mp = — hz
|B| Z
1 2
Sp = \/@ Z(hl —mh) ‘




Batch Normalization (a.k.a. BatchNorm)
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® Shifts and rescales each activation so that its mean and variance across
the batch become values that are learned during training

Calculate the sample mean and
standard deviation for each hidden unit
across samples of the batch.

mp

Sh

/|
= @th

eB

1
= \/@ Z;hi —mp)?

Standardize (normalize) to zero-mean and unit
standard deviation.

P Vi € B,

Scale by y and shift by &, which are learned parameters.

hi < vh; + 6 Vi € B.



Batch Normalization (a.k.a. BatchNorm)

A
N

x — BN f; L-—L BN £, >
] l ]

e Applied independently to each hidden unit

{BN|—{ 3 [~/

* Standard FC Network with K layers, each with D hidden units:
KD learned scales, ¥ , and KD learned offset, 6

* Convolutional Network with K layers, each with C channels:
KC learned scales, y , and KC learned offset, §



Benefits of BatchNorm

$table forward propagation

* Initialize offsets § to zero and scales y to 1
 Variance now increases linearly

k" block adds one unit of variance to variance of k

At initialization, later layers make smaller relative change to overall
variation

* During training, the scales can increase in later layers if helpful
—>control the effective depth

1 2 3
x —Lo(BN | f1 L BN | o fnd L BN fy



Benefits of BatchNorm

Supports higher learning rates
Makes the loss surface smoother (reduces shattered gradients)

a) Residual b) No residual

connections connections

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the Loss Landscape of Neural Nets,” arXiv.org,
https://arxiv.org/abs/1712.09913v3


https://arxiv.org/abs/1712.09913v3

Benefits of BatchNorm
Regularization via added noise

BatchNorm injects noise since BN scale and shift depend on batch statistics



Topics

® Residual connections and residual blocks
® Exploding gradients in residual networks
® Batch normalization

® Common residual architectures



ResNet (2015)

ResNet Block

-

ReLUP>{ Conv 1x1 [>{BN}>| }>ReLUP> Conv 1x1
Reduce Increase
channels by -+ 4 X 4 channels by
factor of four factor of four

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015,
http://arxiv.org/abs/1512.03385
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Resnet 200 (2016) for ImageNet
Classification

i J-'.-F[ReLU]-b[ Conv 1x1 i ReLUHConv 3x3
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K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015,
http://arxiv.org/abs/1512.03385
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DenseNet

Concatenate to output Concatenate to output Concatenate to output

i

3 channels 32+3=35 channels 32+35=67 channels 32+67=99 channels

Figure from
UDL

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017b). Densely connected convolutional networks.

IEEE/CVF Computer Vision & Pattern Recognition, 4700—4708.

Figure 1: A 5-layer dense block with a growth rate of £ = 4.
Each layer takes all preceding feature-maps as input.

Figure from
paper



U-Net (2016)

Crop and concatenate

Crop and concatenate

Crop and concatenate
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Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. International
Conference on Medical Image Computing and ComputerAssisted Intervention, 234-241.



U-Net Results

Figure 11.11 Segmentation using U-Net in 3D. a) Three slices through a 3D
volume of mouse cortex taken by scanning electron microscope. b) A single U-
Net is used to classify voxels as being inside or outside neurites. Connected
regions are identified with different colors. c¢) For a better result, an ensemble of
five U-Nets is trained, and a voxel is only classified as belonging to the cell if all
five networks agree. Adapted from Falk et al. (2019).



Stacked hourglass networks for Pose Estimation

Output heatmaps Estimated pose

Output
heatmaps

Hourglass block

c) ’ ®
Hourglass block ) /
pd- e
- —3 2
T— =

Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for human pose estimation. European Conference on Computer Vision, 483-499.




Feature Pyramid Networks

’ Figure 1. (a) Using an image pyramid to build a feature pyramid.

e Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
(a) Featurized image pyramid (b) Single feature map only single scale features for faster detection. (c) An alternative is

to reuse the pyramidal feature hierarchy computed by a ConvNet

[predict as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
/ . In this figure, feature maps are indicate by blue outlines and thicker
A7 outlines denote semantically stronger features.
(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

T-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks for Object Detection,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 936—944. doi:
10.1109/CVPR.2017.106.
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Feature Pyramid Networks

predict

_____ £ predict

Figure 2. Top: a top-down architecture with skip connections,
where predictions are made on the finest level (e.g., [28]). Bottom:
our model that has a similar structure but leverages it as a feature
pyramid, with predictions made independently at all levels.

Figure 3. A building block illustrating the lateral connection and
the top-down pathway, merged by addition.

T-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks for Object Detection,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 936—944. doi:
10.1109/CVPR.2017.106.
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Midterm Reminder

Please bring your laptops to both classes next week.

e Tuesday: Review / coding practice
e \Vednesday: Midterm starts!
e Friday: Midterm due



Feedback?




